3.134 \(\int \frac {\sec (e+f x) (c-c \sec (e+f x))^{3/2}}{\sqrt {a+a \sec (e+f x)}} \, dx\)

Optimal. Leaf size=94 \[ -\frac {2 c^2 \tan (e+f x) \log (\sec (e+f x)+1)}{f \sqrt {a \sec (e+f x)+a} \sqrt {c-c \sec (e+f x)}}-\frac {c \tan (e+f x) \sqrt {c-c \sec (e+f x)}}{f \sqrt {a \sec (e+f x)+a}} \]

[Out]

-2*c^2*ln(1+sec(f*x+e))*tan(f*x+e)/f/(a+a*sec(f*x+e))^(1/2)/(c-c*sec(f*x+e))^(1/2)-c*(c-c*sec(f*x+e))^(1/2)*ta
n(f*x+e)/f/(a+a*sec(f*x+e))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.27, antiderivative size = 94, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {3955, 3952} \[ -\frac {2 c^2 \tan (e+f x) \log (\sec (e+f x)+1)}{f \sqrt {a \sec (e+f x)+a} \sqrt {c-c \sec (e+f x)}}-\frac {c \tan (e+f x) \sqrt {c-c \sec (e+f x)}}{f \sqrt {a \sec (e+f x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[e + f*x]*(c - c*Sec[e + f*x])^(3/2))/Sqrt[a + a*Sec[e + f*x]],x]

[Out]

(-2*c^2*Log[1 + Sec[e + f*x]]*Tan[e + f*x])/(f*Sqrt[a + a*Sec[e + f*x]]*Sqrt[c - c*Sec[e + f*x]]) - (c*Sqrt[c
- c*Sec[e + f*x]]*Tan[e + f*x])/(f*Sqrt[a + a*Sec[e + f*x]])

Rule 3952

Int[(csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)])/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) +
(a_)], x_Symbol] :> Simp[(a*c*Log[1 + (b*Csc[e + f*x])/a]*Cot[e + f*x])/(b*f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[c +
 d*Csc[e + f*x]]), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 3955

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)
)^(n_), x_Symbol] :> -Simp[(d*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(c + d*Csc[e + f*x])^(n - 1))/(f*(m + n)), x
] + Dist[(c*(2*n - 1))/(m + n), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*(c + d*Csc[e + f*x])^(n - 1), x], x] /
; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[n - 1/2, 0] &&  !LtQ[m, -2
^(-1)] &&  !(IGtQ[m - 1/2, 0] && LtQ[m, n])

Rubi steps

\begin {align*} \int \frac {\sec (e+f x) (c-c \sec (e+f x))^{3/2}}{\sqrt {a+a \sec (e+f x)}} \, dx &=-\frac {c \sqrt {c-c \sec (e+f x)} \tan (e+f x)}{f \sqrt {a+a \sec (e+f x)}}+(2 c) \int \frac {\sec (e+f x) \sqrt {c-c \sec (e+f x)}}{\sqrt {a+a \sec (e+f x)}} \, dx\\ &=-\frac {2 c^2 \log (1+\sec (e+f x)) \tan (e+f x)}{f \sqrt {a+a \sec (e+f x)} \sqrt {c-c \sec (e+f x)}}-\frac {c \sqrt {c-c \sec (e+f x)} \tan (e+f x)}{f \sqrt {a+a \sec (e+f x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 1.83, size = 173, normalized size = 1.84 \[ \frac {c e^{-2 i (e+f x)} \left (1+e^{2 i (e+f x)}\right )^2 \cos \left (\frac {1}{2} (e+f x)\right ) \cot \left (\frac {1}{2} (e+f x)\right ) \sec ^3(e+f x) \sqrt {c-c \sec (e+f x)} \left (-1+\left (4 \log \left (1+e^{i (e+f x)}\right )-2 \log \left (1+e^{2 i (e+f x)}\right )\right ) \cos (e+f x)\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+i \sin \left (\frac {1}{2} (e+f x)\right )\right )}{2 f \left (1+e^{i (e+f x)}\right ) \sqrt {a (\sec (e+f x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[e + f*x]*(c - c*Sec[e + f*x])^(3/2))/Sqrt[a + a*Sec[e + f*x]],x]

[Out]

(c*(1 + E^((2*I)*(e + f*x)))^2*Cos[(e + f*x)/2]*Cot[(e + f*x)/2]*(-1 + Cos[e + f*x]*(4*Log[1 + E^(I*(e + f*x))
] - 2*Log[1 + E^((2*I)*(e + f*x))]))*Sec[e + f*x]^3*Sqrt[c - c*Sec[e + f*x]]*(Cos[(e + f*x)/2] + I*Sin[(e + f*
x)/2]))/(2*E^((2*I)*(e + f*x))*(1 + E^(I*(e + f*x)))*f*Sqrt[a*(1 + Sec[e + f*x])])

________________________________________________________________________________________

fricas [F]  time = 0.64, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {{\left (c \sec \left (f x + e\right )^{2} - c \sec \left (f x + e\right )\right )} \sqrt {-c \sec \left (f x + e\right ) + c}}{\sqrt {a \sec \left (f x + e\right ) + a}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(c-c*sec(f*x+e))^(3/2)/(a+a*sec(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

integral(-(c*sec(f*x + e)^2 - c*sec(f*x + e))*sqrt(-c*sec(f*x + e) + c)/sqrt(a*sec(f*x + e) + a), x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: NotImplementedError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(c-c*sec(f*x+e))^(3/2)/(a+a*sec(f*x+e))^(1/2),x, algorithm="giac")

[Out]

Exception raised: NotImplementedError >> Unable to parse Giac output: Unable to check sign: (4*pi/x/2)>(-4*pi/
x/2)4*c*(1/2*(c^2*sqrt(-a*c)*(c*tan(1/2*(f*x+exp(1)))^2-c)+c^3*sqrt(-a*c))/a/(c*tan(1/2*(f*x+exp(1)))^2-c)/abs
(c)-1/2*c^2*sqrt(-a*c)*ln(c*tan(1/2*(f*x+exp(1)))^2-c)/a/abs(c))*sign(tan(1/2*(f*x+exp(1)))^3+tan(1/2*(f*x+exp
(1))))/c/f

________________________________________________________________________________________

maple [A]  time = 1.89, size = 149, normalized size = 1.59 \[ -\frac {\left (2 \cos \left (f x +e \right ) \ln \left (-\frac {-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )+2 \cos \left (f x +e \right ) \ln \left (-\frac {-\sin \left (f x +e \right )-1+\cos \left (f x +e \right )}{\sin \left (f x +e \right )}\right )+\cos \left (f x +e \right )+1\right ) \cos \left (f x +e \right ) \left (\frac {c \left (-1+\cos \left (f x +e \right )\right )}{\cos \left (f x +e \right )}\right )^{\frac {3}{2}} \sqrt {\frac {a \left (1+\cos \left (f x +e \right )\right )}{\cos \left (f x +e \right )}}}{f \sin \left (f x +e \right ) \left (-1+\cos \left (f x +e \right )\right ) a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(f*x+e)*(c-c*sec(f*x+e))^(3/2)/(a+a*sec(f*x+e))^(1/2),x)

[Out]

-1/f*(2*cos(f*x+e)*ln(-(-1+cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+2*cos(f*x+e)*ln(-(-sin(f*x+e)-1+cos(f*x+e))/sin(
f*x+e))+cos(f*x+e)+1)*cos(f*x+e)*(c*(-1+cos(f*x+e))/cos(f*x+e))^(3/2)*(a*(1+cos(f*x+e))/cos(f*x+e))^(1/2)/sin(
f*x+e)/(-1+cos(f*x+e))/a

________________________________________________________________________________________

maxima [B]  time = 0.58, size = 276, normalized size = 2.94 \[ -\frac {2 \, {\left (c \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) \sin \left (2 \, f x + 2 \, e\right ) - {\left (c \cos \left (2 \, f x + 2 \, e\right )^{2} + c \sin \left (2 \, f x + 2 \, e\right )^{2} + 2 \, c \cos \left (2 \, f x + 2 \, e\right ) + c\right )} \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right ) + 1\right ) + 2 \, {\left (c \cos \left (2 \, f x + 2 \, e\right )^{2} + c \sin \left (2 \, f x + 2 \, e\right )^{2} + 2 \, c \cos \left (2 \, f x + 2 \, e\right ) + c\right )} \arctan \left (\sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ), \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right ) + 1\right ) - {\left (c \cos \left (2 \, f x + 2 \, e\right ) + c\right )} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, f x + 2 \, e\right ), \cos \left (2 \, f x + 2 \, e\right )\right )\right )\right )} \sqrt {a} \sqrt {c}}{{\left (a \cos \left (2 \, f x + 2 \, e\right )^{2} + a \sin \left (2 \, f x + 2 \, e\right )^{2} + 2 \, a \cos \left (2 \, f x + 2 \, e\right ) + a\right )} f} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(c-c*sec(f*x+e))^(3/2)/(a+a*sec(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

-2*(c*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))*sin(2*f*x + 2*e) - (c*cos(2*f*x + 2*e)^2 + c*sin(2*
f*x + 2*e)^2 + 2*c*cos(2*f*x + 2*e) + c)*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e) + 1) + 2*(c*cos(2*f*x + 2*
e)^2 + c*sin(2*f*x + 2*e)^2 + 2*c*cos(2*f*x + 2*e) + c)*arctan2(sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x +
2*e))), cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1) - (c*cos(2*f*x + 2*e) + c)*sin(1/2*arctan2(s
in(2*f*x + 2*e), cos(2*f*x + 2*e))))*sqrt(a)*sqrt(c)/((a*cos(2*f*x + 2*e)^2 + a*sin(2*f*x + 2*e)^2 + 2*a*cos(2
*f*x + 2*e) + a)*f)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (c-\frac {c}{\cos \left (e+f\,x\right )}\right )}^{3/2}}{\cos \left (e+f\,x\right )\,\sqrt {a+\frac {a}{\cos \left (e+f\,x\right )}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c - c/cos(e + f*x))^(3/2)/(cos(e + f*x)*(a + a/cos(e + f*x))^(1/2)),x)

[Out]

int((c - c/cos(e + f*x))^(3/2)/(cos(e + f*x)*(a + a/cos(e + f*x))^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (- c \left (\sec {\left (e + f x \right )} - 1\right )\right )^{\frac {3}{2}} \sec {\left (e + f x \right )}}{\sqrt {a \left (\sec {\left (e + f x \right )} + 1\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(f*x+e)*(c-c*sec(f*x+e))**(3/2)/(a+a*sec(f*x+e))**(1/2),x)

[Out]

Integral((-c*(sec(e + f*x) - 1))**(3/2)*sec(e + f*x)/sqrt(a*(sec(e + f*x) + 1)), x)

________________________________________________________________________________________